928 lines
29 KiB
Python
Executable File
928 lines
29 KiB
Python
Executable File
# https://github.com/stechiez/raspberrypi-pico/blob/main/pico_st7735/st7735/ST7735.py
|
|
|
|
#driver for Sainsmart 1.8" TFT display ST7735
|
|
#Translated by Guy Carver from the ST7735 sample code.
|
|
#Modirfied for micropython-esp32 by boochow
|
|
|
|
import machine
|
|
import time
|
|
from math import sqrt
|
|
|
|
#TFTRotations and TFTRGB are bits to set
|
|
# on MADCTL to control display rotation/color layout
|
|
#Looking at display with pins on top.
|
|
#00 = upper left printing right
|
|
#10 = does nothing (MADCTL_ML)
|
|
#20 = upper left printing down (backwards) (Vertical flip)
|
|
#40 = upper right printing left (backwards) (X Flip)
|
|
#80 = lower left printing right (backwards) (Y Flip)
|
|
#04 = (MADCTL_MH)
|
|
|
|
#60 = 90 right rotation
|
|
#C0 = 180 right rotation
|
|
#A0 = 270 right rotation
|
|
TFTRotations = [0x00, 0x60, 0xC0, 0xA0]
|
|
TFTBGR = 0x08 #When set color is bgr else rgb.
|
|
TFTRGB = 0x00
|
|
|
|
#@micropython.native
|
|
def clamp( aValue, aMin, aMax ) :
|
|
return max(aMin, min(aMax, aValue))
|
|
|
|
#@micropython.native
|
|
def TFTColor( aR, aG, aB ) :
|
|
'''Create a 16 bit rgb value from the given R,G,B from 0-255.
|
|
This assumes rgb 565 layout and will be incorrect for bgr.'''
|
|
return ((aR & 0xF8) << 8) | ((aG & 0xFC) << 3) | (aB >> 3)
|
|
|
|
ScreenSize = (128, 160)
|
|
|
|
class TFT(object) :
|
|
"""Sainsmart TFT 7735 display driver."""
|
|
|
|
NOP = 0x0
|
|
SWRESET = 0x01
|
|
RDDID = 0x04
|
|
RDDST = 0x09
|
|
|
|
SLPIN = 0x10
|
|
SLPOUT = 0x11
|
|
PTLON = 0x12
|
|
NORON = 0x13
|
|
|
|
INVOFF = 0x20
|
|
INVON = 0x21
|
|
DISPOFF = 0x28
|
|
DISPON = 0x29
|
|
CASET = 0x2A
|
|
RASET = 0x2B
|
|
RAMWR = 0x2C
|
|
RAMRD = 0x2E
|
|
|
|
VSCRDEF = 0x33
|
|
VSCSAD = 0x37
|
|
|
|
COLMOD = 0x3A
|
|
MADCTL = 0x36
|
|
|
|
FRMCTR1 = 0xB1
|
|
FRMCTR2 = 0xB2
|
|
FRMCTR3 = 0xB3
|
|
INVCTR = 0xB4
|
|
DISSET5 = 0xB6
|
|
|
|
PWCTR1 = 0xC0
|
|
PWCTR2 = 0xC1
|
|
PWCTR3 = 0xC2
|
|
PWCTR4 = 0xC3
|
|
PWCTR5 = 0xC4
|
|
VMCTR1 = 0xC5
|
|
|
|
RDID1 = 0xDA
|
|
RDID2 = 0xDB
|
|
RDID3 = 0xDC
|
|
RDID4 = 0xDD
|
|
|
|
PWCTR6 = 0xFC
|
|
|
|
GMCTRP1 = 0xE0
|
|
GMCTRN1 = 0xE1
|
|
|
|
BLACK = 0
|
|
RED = TFTColor(0xFF, 0x00, 0x00)
|
|
MAROON = TFTColor(0x80, 0x00, 0x00)
|
|
GREEN = TFTColor(0x00, 0xFF, 0x00)
|
|
FOREST = TFTColor(0x00, 0x80, 0x80)
|
|
BLUE = TFTColor(0x00, 0x00, 0xFF)
|
|
NAVY = TFTColor(0x00, 0x00, 0x80)
|
|
CYAN = TFTColor(0x00, 0xFF, 0xFF)
|
|
YELLOW = TFTColor(0xFF, 0xFF, 0x00)
|
|
PURPLE = TFTColor(0xFF, 0x00, 0xFF)
|
|
WHITE = TFTColor(0xFF, 0xFF, 0xFF)
|
|
GRAY = TFTColor(0x80, 0x80, 0x80)
|
|
|
|
@staticmethod
|
|
def color( aR, aG, aB ) :
|
|
'''Create a 565 rgb TFTColor value'''
|
|
return TFTColor(aR, aG, aB)
|
|
|
|
def __init__( self, spi, aDC, aReset, aCS) :
|
|
"""aLoc SPI pin location is either 1 for 'X' or 2 for 'Y'.
|
|
aDC is the DC pin and aReset is the reset pin."""
|
|
self._size = ScreenSize
|
|
self._offset = bytearray([0,0])
|
|
self.rotate = 0 #Vertical with top toward pins.
|
|
self._rgb = True #color order of rgb.
|
|
self.tfa = 0 #top fixed area
|
|
self.bfa = 0 #bottom fixed area
|
|
self.dc = machine.Pin(aDC, machine.Pin.OUT, machine.Pin.PULL_DOWN)
|
|
self.reset = machine.Pin(aReset, machine.Pin.OUT, machine.Pin.PULL_DOWN)
|
|
self.cs = machine.Pin(aCS, machine.Pin.OUT, machine.Pin.PULL_DOWN)
|
|
self.cs(1)
|
|
self.spi = spi
|
|
self.colorData = bytearray(2)
|
|
self.windowLocData = bytearray(4)
|
|
|
|
def size( self ) :
|
|
return self._size
|
|
|
|
# @micropython.native
|
|
def on( self, aTF = True ) :
|
|
'''Turn display on or off.'''
|
|
self._writecommand(TFT.DISPON if aTF else TFT.DISPOFF)
|
|
|
|
# @micropython.native
|
|
def invertcolor( self, aBool ) :
|
|
'''Invert the color data IE: Black = White.'''
|
|
self._writecommand(TFT.INVON if aBool else TFT.INVOFF)
|
|
|
|
# @micropython.native
|
|
def rgb( self, aTF = True ) :
|
|
'''True = rgb else bgr'''
|
|
self._rgb = aTF
|
|
self._setMADCTL()
|
|
|
|
# @micropython.native
|
|
def rotation( self, aRot ) :
|
|
'''0 - 3. Starts vertical with top toward pins and rotates 90 deg
|
|
clockwise each step.'''
|
|
if (0 <= aRot < 4):
|
|
rotchange = self.rotate ^ aRot
|
|
self.rotate = aRot
|
|
#If switching from vertical to horizontal swap x,y
|
|
# (indicated by bit 0 changing).
|
|
if (rotchange & 1):
|
|
self._size =(self._size[1], self._size[0])
|
|
self._setMADCTL()
|
|
|
|
# @micropython.native
|
|
def pixel( self, aPos, aColor ) :
|
|
'''Draw a pixel at the given position'''
|
|
if 0 <= aPos[0] < self._size[0] and 0 <= aPos[1] < self._size[1]:
|
|
self._setwindowpoint(aPos)
|
|
self._pushcolor(aColor)
|
|
|
|
# @micropython.native
|
|
def text( self, aPos, aString, aColor, aFont, aSize = 1, nowrap = False ) :
|
|
'''Draw a text at the given position. If the string reaches the end of the
|
|
display it is wrapped to aPos[0] on the next line. aSize may be an integer
|
|
which will size the font uniformly on w,h or a or any type that may be
|
|
indexed with [0] or [1].'''
|
|
|
|
if aFont == None:
|
|
return
|
|
|
|
#Make a size either from single value or 2 elements.
|
|
if (type(aSize) == int) or (type(aSize) == float):
|
|
wh = (aSize, aSize)
|
|
else:
|
|
wh = aSize
|
|
|
|
px, py = aPos
|
|
width = wh[0] * aFont["Width"] + 1
|
|
for c in aString:
|
|
self.char((px, py), c, aColor, aFont, wh)
|
|
px += width
|
|
#We check > rather than >= to let the right (blank) edge of the
|
|
# character print off the right of the screen.
|
|
if px + width > self._size[0]:
|
|
if nowrap:
|
|
break
|
|
else:
|
|
py += aFont["Height"] * wh[1] + 1
|
|
px = aPos[0]
|
|
|
|
# @micropython.native
|
|
def char( self, aPos, aChar, aColor, aFont, aSizes ) :
|
|
'''Draw a character at the given position using the given font and color.
|
|
aSizes is a tuple with x, y as integer scales indicating the
|
|
# of pixels to draw for each pixel in the character.'''
|
|
|
|
if aFont == None:
|
|
return
|
|
|
|
startchar = aFont['Start']
|
|
endchar = aFont['End']
|
|
|
|
ci = ord(aChar)
|
|
if (startchar <= ci <= endchar):
|
|
fontw = aFont['Width']
|
|
fonth = aFont['Height']
|
|
ci = (ci - startchar) * fontw
|
|
|
|
charA = aFont["Data"][ci:ci + fontw]
|
|
px = aPos[0]
|
|
if aSizes[0] <= 1 and aSizes[1] <= 1 :
|
|
buf = bytearray(2 * fonth * fontw)
|
|
for q in range(fontw) :
|
|
c = charA[q]
|
|
for r in range(fonth) :
|
|
if c & 0x01 :
|
|
pos = 2 * (r * fontw + q)
|
|
buf[pos] = aColor >> 8
|
|
buf[pos + 1] = aColor & 0xff
|
|
c >>= 1
|
|
self.image(aPos[0], aPos[1], aPos[0] + fontw - 1, aPos[1] + fonth - 1, buf)
|
|
else:
|
|
for c in charA :
|
|
py = aPos[1]
|
|
for r in range(fonth) :
|
|
if c & 0x01 :
|
|
self.fillrect((px, py), aSizes, aColor)
|
|
py += aSizes[1]
|
|
c >>= 1
|
|
px += aSizes[0]
|
|
|
|
# @micropython.native
|
|
def line( self, aStart, aEnd, aColor ) :
|
|
'''Draws a line from aStart to aEnd in the given color. Vertical or horizontal
|
|
lines are forwarded to vline and hline.'''
|
|
if aStart[0] == aEnd[0]:
|
|
#Make sure we use the smallest y.
|
|
pnt = aEnd if (aEnd[1] < aStart[1]) else aStart
|
|
self.vline(pnt, abs(aEnd[1] - aStart[1]) + 1, aColor)
|
|
elif aStart[1] == aEnd[1]:
|
|
#Make sure we use the smallest x.
|
|
pnt = aEnd if aEnd[0] < aStart[0] else aStart
|
|
self.hline(pnt, abs(aEnd[0] - aStart[0]) + 1, aColor)
|
|
else:
|
|
px, py = aStart
|
|
ex, ey = aEnd
|
|
dx = ex - px
|
|
dy = ey - py
|
|
inx = 1 if dx > 0 else -1
|
|
iny = 1 if dy > 0 else -1
|
|
|
|
dx = abs(dx)
|
|
dy = abs(dy)
|
|
if (dx >= dy):
|
|
dy <<= 1
|
|
e = dy - dx
|
|
dx <<= 1
|
|
while (px != ex):
|
|
self.pixel((px, py), aColor)
|
|
if (e >= 0):
|
|
py += iny
|
|
e -= dx
|
|
e += dy
|
|
px += inx
|
|
else:
|
|
dx <<= 1
|
|
e = dx - dy
|
|
dy <<= 1
|
|
while (py != ey):
|
|
self.pixel((px, py), aColor)
|
|
if (e >= 0):
|
|
px += inx
|
|
e -= dy
|
|
e += dx
|
|
py += iny
|
|
|
|
# @micropython.native
|
|
def vline( self, aStart, aLen, aColor ) :
|
|
'''Draw a vertical line from aStart for aLen. aLen may be negative.'''
|
|
start = (clamp(aStart[0], 0, self._size[0]), clamp(aStart[1], 0, self._size[1]))
|
|
stop = (start[0], clamp(start[1] + aLen, 0, self._size[1]))
|
|
#Make sure smallest y 1st.
|
|
if (stop[1] < start[1]):
|
|
start, stop = stop, start
|
|
self._setwindowloc(start, stop)
|
|
self._setColor(aColor)
|
|
self._draw(aLen)
|
|
|
|
# @micropython.native
|
|
def hline( self, aStart, aLen, aColor ) :
|
|
'''Draw a horizontal line from aStart for aLen. aLen may be negative.'''
|
|
start = (clamp(aStart[0], 0, self._size[0]), clamp(aStart[1], 0, self._size[1]))
|
|
stop = (clamp(start[0] + aLen, 0, self._size[0]), start[1])
|
|
#Make sure smallest x 1st.
|
|
if (stop[0] < start[0]):
|
|
start, stop = stop, start
|
|
self._setwindowloc(start, stop)
|
|
self._setColor(aColor)
|
|
self._draw(aLen)
|
|
|
|
# @micropython.native
|
|
def rect( self, aStart, aSize, aColor ) :
|
|
'''Draw a hollow rectangle. aStart is the smallest coordinate corner
|
|
and aSize is a tuple indicating width, height.'''
|
|
self.hline(aStart, aSize[0], aColor)
|
|
self.hline((aStart[0], aStart[1] + aSize[1] - 1), aSize[0], aColor)
|
|
self.vline(aStart, aSize[1], aColor)
|
|
self.vline((aStart[0] + aSize[0] - 1, aStart[1]), aSize[1], aColor)
|
|
|
|
# @micropython.native
|
|
def fillrect( self, aStart, aSize, aColor ) :
|
|
'''Draw a filled rectangle. aStart is the smallest coordinate corner
|
|
and aSize is a tuple indicating width, height.'''
|
|
start = (clamp(aStart[0], 0, self._size[0]), clamp(aStart[1], 0, self._size[1]))
|
|
end = (clamp(start[0] + aSize[0] - 1, 0, self._size[0]), clamp(start[1] + aSize[1] - 1, 0, self._size[1]))
|
|
|
|
if (end[0] < start[0]):
|
|
tmp = end[0]
|
|
end = (start[0], end[1])
|
|
start = (tmp, start[1])
|
|
if (end[1] < start[1]):
|
|
tmp = end[1]
|
|
end = (end[0], start[1])
|
|
start = (start[0], tmp)
|
|
|
|
self._setwindowloc(start, end)
|
|
numPixels = (end[0] - start[0] + 1) * (end[1] - start[1] + 1)
|
|
self._setColor(aColor)
|
|
self._draw(numPixels)
|
|
|
|
# @micropython.native
|
|
def circle( self, aPos, aRadius, aColor ) :
|
|
'''Draw a hollow circle with the given radius and color with aPos as center.'''
|
|
self.colorData[0] = aColor >> 8
|
|
self.colorData[1] = aColor
|
|
xend = int(0.7071 * aRadius) + 1
|
|
rsq = aRadius * aRadius
|
|
for x in range(xend) :
|
|
y = int(sqrt(rsq - x * x))
|
|
xp = aPos[0] + x
|
|
yp = aPos[1] + y
|
|
xn = aPos[0] - x
|
|
yn = aPos[1] - y
|
|
xyp = aPos[0] + y
|
|
yxp = aPos[1] + x
|
|
xyn = aPos[0] - y
|
|
yxn = aPos[1] - x
|
|
|
|
self._setwindowpoint((xp, yp))
|
|
self._writedata(self.colorData)
|
|
self._setwindowpoint((xp, yn))
|
|
self._writedata(self.colorData)
|
|
self._setwindowpoint((xn, yp))
|
|
self._writedata(self.colorData)
|
|
self._setwindowpoint((xn, yn))
|
|
self._writedata(self.colorData)
|
|
self._setwindowpoint((xyp, yxp))
|
|
self._writedata(self.colorData)
|
|
self._setwindowpoint((xyp, yxn))
|
|
self._writedata(self.colorData)
|
|
self._setwindowpoint((xyn, yxp))
|
|
self._writedata(self.colorData)
|
|
self._setwindowpoint((xyn, yxn))
|
|
self._writedata(self.colorData)
|
|
|
|
# @micropython.native
|
|
def fillcircle( self, aPos, aRadius, aColor ) :
|
|
'''Draw a filled circle with given radius and color with aPos as center'''
|
|
rsq = aRadius * aRadius
|
|
for x in range(aRadius) :
|
|
y = int(sqrt(rsq - x * x))
|
|
y0 = aPos[1] - y
|
|
ey = y0 + y * 2
|
|
y0 = clamp(y0, 0, self._size[1])
|
|
ln = abs(ey - y0) + 1;
|
|
|
|
self.vline((aPos[0] + x, y0), ln, aColor)
|
|
self.vline((aPos[0] - x, y0), ln, aColor)
|
|
|
|
def fill( self, aColor = BLACK ) :
|
|
'''Fill screen with the given color.'''
|
|
self.fillrect((0, 0), self._size, aColor)
|
|
|
|
def image( self, x0, y0, x1, y1, data ) :
|
|
self._setwindowloc((x0, y0), (x1, y1))
|
|
self._writedata(data)
|
|
|
|
def setvscroll(self, tfa, bfa) :
|
|
''' set vertical scroll area '''
|
|
self._writecommand(TFT.VSCRDEF)
|
|
data2 = bytearray([0, tfa])
|
|
self._writedata(data2)
|
|
data2[1] = 162 - tfa - bfa
|
|
self._writedata(data2)
|
|
data2[1] = bfa
|
|
self._writedata(data2)
|
|
self.tfa = tfa
|
|
self.bfa = bfa
|
|
|
|
def vscroll(self, value) :
|
|
a = value + self.tfa
|
|
if (a + self.bfa > 162) :
|
|
a = 162 - self.bfa
|
|
self._vscrolladdr(a)
|
|
|
|
def _vscrolladdr(self, addr) :
|
|
self._writecommand(TFT.VSCSAD)
|
|
data2 = bytearray([addr >> 8, addr & 0xff])
|
|
self._writedata(data2)
|
|
|
|
# @micropython.native
|
|
def _setColor( self, aColor ) :
|
|
self.colorData[0] = aColor >> 8
|
|
self.colorData[1] = aColor
|
|
self.buf = bytes(self.colorData) * 32
|
|
|
|
# @micropython.native
|
|
def _draw( self, aPixels ) :
|
|
'''Send given color to the device aPixels times.'''
|
|
|
|
self.dc(1)
|
|
self.cs(0)
|
|
for i in range(aPixels//32):
|
|
self.spi.write(self.buf)
|
|
rest = (int(aPixels) % 32)
|
|
if rest > 0:
|
|
buf2 = bytes(self.colorData) * rest
|
|
self.spi.write(buf2)
|
|
self.cs(1)
|
|
|
|
# @micropython.native
|
|
def _setwindowpoint( self, aPos ) :
|
|
'''Set a single point for drawing a color to.'''
|
|
x = self._offset[0] + int(aPos[0])
|
|
y = self._offset[1] + int(aPos[1])
|
|
self._writecommand(TFT.CASET) #Column address set.
|
|
self.windowLocData[0] = self._offset[0]
|
|
self.windowLocData[1] = x
|
|
self.windowLocData[2] = self._offset[0]
|
|
self.windowLocData[3] = x
|
|
self._writedata(self.windowLocData)
|
|
|
|
self._writecommand(TFT.RASET) #Row address set.
|
|
self.windowLocData[0] = self._offset[1]
|
|
self.windowLocData[1] = y
|
|
self.windowLocData[2] = self._offset[1]
|
|
self.windowLocData[3] = y
|
|
self._writedata(self.windowLocData)
|
|
self._writecommand(TFT.RAMWR) #Write to RAM.
|
|
|
|
# @micropython.native
|
|
def _setwindowloc( self, aPos0, aPos1 ) :
|
|
'''Set a rectangular area for drawing a color to.'''
|
|
self._writecommand(TFT.CASET) #Column address set.
|
|
self.windowLocData[0] = self._offset[0]
|
|
self.windowLocData[1] = self._offset[0] + int(aPos0[0])
|
|
self.windowLocData[2] = self._offset[0]
|
|
self.windowLocData[3] = self._offset[0] + int(aPos1[0])
|
|
self._writedata(self.windowLocData)
|
|
|
|
self._writecommand(TFT.RASET) #Row address set.
|
|
self.windowLocData[0] = self._offset[1]
|
|
self.windowLocData[1] = self._offset[1] + int(aPos0[1])
|
|
self.windowLocData[2] = self._offset[1]
|
|
self.windowLocData[3] = self._offset[1] + int(aPos1[1])
|
|
self._writedata(self.windowLocData)
|
|
|
|
self._writecommand(TFT.RAMWR) #Write to RAM.
|
|
|
|
#@micropython.native
|
|
def _writecommand( self, aCommand ) :
|
|
'''Write given command to the device.'''
|
|
self.dc(0)
|
|
self.cs(0)
|
|
self.spi.write(bytearray([aCommand]))
|
|
self.cs(1)
|
|
|
|
#@micropython.native
|
|
def _writedata( self, aData ) :
|
|
'''Write given data to the device. This may be
|
|
either a single int or a bytearray of values.'''
|
|
self.dc(1)
|
|
self.cs(0)
|
|
self.spi.write(aData)
|
|
self.cs(1)
|
|
|
|
#@micropython.native
|
|
def _pushcolor( self, aColor ) :
|
|
'''Push given color to the device.'''
|
|
self.colorData[0] = aColor >> 8
|
|
self.colorData[1] = aColor
|
|
self._writedata(self.colorData)
|
|
|
|
#@micropython.native
|
|
def _setMADCTL( self ) :
|
|
'''Set screen rotation and RGB/BGR format.'''
|
|
self._writecommand(TFT.MADCTL)
|
|
rgb = TFTRGB if self._rgb else TFTBGR
|
|
self._writedata(bytearray([TFTRotations[self.rotate] | rgb]))
|
|
|
|
#@micropython.native
|
|
def _reset( self ) :
|
|
'''Reset the device.'''
|
|
self.dc(0)
|
|
self.reset(1)
|
|
time.sleep_us(500)
|
|
self.reset(0)
|
|
time.sleep_us(500)
|
|
self.reset(1)
|
|
time.sleep_us(500)
|
|
|
|
def initb( self ) :
|
|
'''Initialize blue tab version.'''
|
|
self._size = (ScreenSize[0] + 2, ScreenSize[1] + 1)
|
|
self._reset()
|
|
self._writecommand(TFT.SWRESET) #Software reset.
|
|
time.sleep_us(50)
|
|
self._writecommand(TFT.SLPOUT) #out of sleep mode.
|
|
time.sleep_us(500)
|
|
|
|
data1 = bytearray(1)
|
|
self._writecommand(TFT.COLMOD) #Set color mode.
|
|
data1[0] = 0x05 #16 bit color.
|
|
self._writedata(data1)
|
|
time.sleep_us(10)
|
|
|
|
data3 = bytearray([0x00, 0x06, 0x03]) #fastest refresh, 6 lines front, 3 lines back.
|
|
self._writecommand(TFT.FRMCTR1) #Frame rate control.
|
|
self._writedata(data3)
|
|
time.sleep_us(10)
|
|
|
|
self._writecommand(TFT.MADCTL)
|
|
data1[0] = 0x08 #row address/col address, bottom to top refresh
|
|
self._writedata(data1)
|
|
|
|
data2 = bytearray(2)
|
|
self._writecommand(TFT.DISSET5) #Display settings
|
|
data2[0] = 0x15 #1 clock cycle nonoverlap, 2 cycle gate rise, 3 cycle oscil, equalize
|
|
data2[1] = 0x02 #fix on VTL
|
|
self._writedata(data2)
|
|
|
|
self._writecommand(TFT.INVCTR) #Display inversion control
|
|
data1[0] = 0x00 #Line inversion.
|
|
self._writedata(data1)
|
|
|
|
self._writecommand(TFT.PWCTR1) #Power control
|
|
data2[0] = 0x02 #GVDD = 4.7V
|
|
data2[1] = 0x70 #1.0uA
|
|
self._writedata(data2)
|
|
time.sleep_us(10)
|
|
|
|
self._writecommand(TFT.PWCTR2) #Power control
|
|
data1[0] = 0x05 #VGH = 14.7V, VGL = -7.35V
|
|
self._writedata(data1)
|
|
|
|
self._writecommand(TFT.PWCTR3) #Power control
|
|
data2[0] = 0x01 #Opamp current small
|
|
data2[1] = 0x02 #Boost frequency
|
|
self._writedata(data2)
|
|
|
|
self._writecommand(TFT.VMCTR1) #Power control
|
|
data2[0] = 0x3C #VCOMH = 4V
|
|
data2[1] = 0x38 #VCOML = -1.1V
|
|
self._writedata(data2)
|
|
time.sleep_us(10)
|
|
|
|
self._writecommand(TFT.PWCTR6) #Power control
|
|
data2[0] = 0x11
|
|
data2[1] = 0x15
|
|
self._writedata(data2)
|
|
|
|
#These different values don't seem to make a difference.
|
|
# dataGMCTRP = bytearray([0x0f, 0x1a, 0x0f, 0x18, 0x2f, 0x28, 0x20, 0x22, 0x1f,
|
|
# 0x1b, 0x23, 0x37, 0x00, 0x07, 0x02, 0x10])
|
|
dataGMCTRP = bytearray([0x02, 0x1c, 0x07, 0x12, 0x37, 0x32, 0x29, 0x2d, 0x29,
|
|
0x25, 0x2b, 0x39, 0x00, 0x01, 0x03, 0x10])
|
|
self._writecommand(TFT.GMCTRP1)
|
|
self._writedata(dataGMCTRP)
|
|
|
|
# dataGMCTRN = bytearray([0x0f, 0x1b, 0x0f, 0x17, 0x33, 0x2c, 0x29, 0x2e, 0x30,
|
|
# 0x30, 0x39, 0x3f, 0x00, 0x07, 0x03, 0x10])
|
|
dataGMCTRN = bytearray([0x03, 0x1d, 0x07, 0x06, 0x2e, 0x2c, 0x29, 0x2d, 0x2e,
|
|
0x2e, 0x37, 0x3f, 0x00, 0x00, 0x02, 0x10])
|
|
self._writecommand(TFT.GMCTRN1)
|
|
self._writedata(dataGMCTRN)
|
|
time.sleep_us(10)
|
|
|
|
self._writecommand(TFT.CASET) #Column address set.
|
|
self.windowLocData[0] = 0x00
|
|
self.windowLocData[1] = 2 #Start at column 2
|
|
self.windowLocData[2] = 0x00
|
|
self.windowLocData[3] = self._size[0] - 1
|
|
self._writedata(self.windowLocData)
|
|
|
|
self._writecommand(TFT.RASET) #Row address set.
|
|
self.windowLocData[1] = 1 #Start at row 2.
|
|
self.windowLocData[3] = self._size[1] - 1
|
|
self._writedata(self.windowLocData)
|
|
|
|
self._writecommand(TFT.NORON) #Normal display on.
|
|
time.sleep_us(10)
|
|
|
|
self._writecommand(TFT.RAMWR)
|
|
time.sleep_us(500)
|
|
|
|
self._writecommand(TFT.DISPON)
|
|
self.cs(1)
|
|
time.sleep_us(500)
|
|
|
|
def initr( self ) :
|
|
'''Initialize a red tab version.'''
|
|
self._reset()
|
|
|
|
self._writecommand(TFT.SWRESET) #Software reset.
|
|
time.sleep_us(150)
|
|
self._writecommand(TFT.SLPOUT) #out of sleep mode.
|
|
time.sleep_us(500)
|
|
|
|
data3 = bytearray([0x01, 0x2C, 0x2D]) #fastest refresh, 6 lines front, 3 lines back.
|
|
self._writecommand(TFT.FRMCTR1) #Frame rate control.
|
|
self._writedata(data3)
|
|
|
|
self._writecommand(TFT.FRMCTR2) #Frame rate control.
|
|
self._writedata(data3)
|
|
|
|
data6 = bytearray([0x01, 0x2c, 0x2d, 0x01, 0x2c, 0x2d])
|
|
self._writecommand(TFT.FRMCTR3) #Frame rate control.
|
|
self._writedata(data6)
|
|
time.sleep_us(10)
|
|
|
|
data1 = bytearray(1)
|
|
self._writecommand(TFT.INVCTR) #Display inversion control
|
|
data1[0] = 0x07 #Line inversion.
|
|
self._writedata(data1)
|
|
|
|
self._writecommand(TFT.PWCTR1) #Power control
|
|
data3[0] = 0xA2
|
|
data3[1] = 0x02
|
|
data3[2] = 0x84
|
|
self._writedata(data3)
|
|
|
|
self._writecommand(TFT.PWCTR2) #Power control
|
|
data1[0] = 0xC5 #VGH = 14.7V, VGL = -7.35V
|
|
self._writedata(data1)
|
|
|
|
data2 = bytearray(2)
|
|
self._writecommand(TFT.PWCTR3) #Power control
|
|
data2[0] = 0x0A #Opamp current small
|
|
data2[1] = 0x00 #Boost frequency
|
|
self._writedata(data2)
|
|
|
|
self._writecommand(TFT.PWCTR4) #Power control
|
|
data2[0] = 0x8A #Opamp current small
|
|
data2[1] = 0x2A #Boost frequency
|
|
self._writedata(data2)
|
|
|
|
self._writecommand(TFT.PWCTR5) #Power control
|
|
data2[0] = 0x8A #Opamp current small
|
|
data2[1] = 0xEE #Boost frequency
|
|
self._writedata(data2)
|
|
|
|
self._writecommand(TFT.VMCTR1) #Power control
|
|
data1[0] = 0x0E
|
|
self._writedata(data1)
|
|
|
|
self._writecommand(TFT.INVOFF)
|
|
|
|
self._writecommand(TFT.MADCTL) #Power control
|
|
data1[0] = 0xC8
|
|
self._writedata(data1)
|
|
|
|
self._writecommand(TFT.COLMOD)
|
|
data1[0] = 0x05
|
|
self._writedata(data1)
|
|
|
|
self._writecommand(TFT.CASET) #Column address set.
|
|
self.windowLocData[0] = 0x00
|
|
self.windowLocData[1] = 0x00
|
|
self.windowLocData[2] = 0x00
|
|
self.windowLocData[3] = self._size[0] - 1
|
|
self._writedata(self.windowLocData)
|
|
|
|
self._writecommand(TFT.RASET) #Row address set.
|
|
self.windowLocData[3] = self._size[1] - 1
|
|
self._writedata(self.windowLocData)
|
|
|
|
dataGMCTRP = bytearray([0x0f, 0x1a, 0x0f, 0x18, 0x2f, 0x28, 0x20, 0x22, 0x1f,
|
|
0x1b, 0x23, 0x37, 0x00, 0x07, 0x02, 0x10])
|
|
self._writecommand(TFT.GMCTRP1)
|
|
self._writedata(dataGMCTRP)
|
|
|
|
dataGMCTRN = bytearray([0x0f, 0x1b, 0x0f, 0x17, 0x33, 0x2c, 0x29, 0x2e, 0x30,
|
|
0x30, 0x39, 0x3f, 0x00, 0x07, 0x03, 0x10])
|
|
self._writecommand(TFT.GMCTRN1)
|
|
self._writedata(dataGMCTRN)
|
|
time.sleep_us(10)
|
|
|
|
self._writecommand(TFT.DISPON)
|
|
time.sleep_us(100)
|
|
|
|
self._writecommand(TFT.NORON) #Normal display on.
|
|
time.sleep_us(10)
|
|
|
|
self.cs(1)
|
|
|
|
def initb2( self ) :
|
|
'''Initialize another blue tab version.'''
|
|
self._size = (ScreenSize[0] + 2, ScreenSize[1] + 1)
|
|
self._offset[0] = 2
|
|
self._offset[1] = 1
|
|
self._reset()
|
|
self._writecommand(TFT.SWRESET) #Software reset.
|
|
time.sleep_us(50)
|
|
self._writecommand(TFT.SLPOUT) #out of sleep mode.
|
|
time.sleep_us(500)
|
|
|
|
data3 = bytearray([0x01, 0x2C, 0x2D]) #
|
|
self._writecommand(TFT.FRMCTR1) #Frame rate control.
|
|
self._writedata(data3)
|
|
time.sleep_us(10)
|
|
|
|
self._writecommand(TFT.FRMCTR2) #Frame rate control.
|
|
self._writedata(data3)
|
|
time.sleep_us(10)
|
|
|
|
self._writecommand(TFT.FRMCTR3) #Frame rate control.
|
|
self._writedata(data3)
|
|
time.sleep_us(10)
|
|
|
|
self._writecommand(TFT.INVCTR) #Display inversion control
|
|
data1 = bytearray(1) #
|
|
data1[0] = 0x07
|
|
self._writedata(data1)
|
|
|
|
self._writecommand(TFT.PWCTR1) #Power control
|
|
data3[0] = 0xA2 #
|
|
data3[1] = 0x02 #
|
|
data3[2] = 0x84 #
|
|
self._writedata(data3)
|
|
time.sleep_us(10)
|
|
|
|
self._writecommand(TFT.PWCTR2) #Power control
|
|
data1[0] = 0xC5 #
|
|
self._writedata(data1)
|
|
|
|
self._writecommand(TFT.PWCTR3) #Power control
|
|
data2 = bytearray(2)
|
|
data2[0] = 0x0A #
|
|
data2[1] = 0x00 #
|
|
self._writedata(data2)
|
|
|
|
self._writecommand(TFT.PWCTR4) #Power control
|
|
data2[0] = 0x8A #
|
|
data2[1] = 0x2A #
|
|
self._writedata(data2)
|
|
|
|
self._writecommand(TFT.PWCTR5) #Power control
|
|
data2[0] = 0x8A #
|
|
data2[1] = 0xEE #
|
|
self._writedata(data2)
|
|
|
|
self._writecommand(TFT.VMCTR1) #Power control
|
|
data1[0] = 0x0E #
|
|
self._writedata(data1)
|
|
time.sleep_us(10)
|
|
|
|
self._writecommand(TFT.MADCTL)
|
|
data1[0] = 0xC8 #row address/col address, bottom to top refresh
|
|
self._writedata(data1)
|
|
|
|
#These different values don't seem to make a difference.
|
|
# dataGMCTRP = bytearray([0x0f, 0x1a, 0x0f, 0x18, 0x2f, 0x28, 0x20, 0x22, 0x1f,
|
|
# 0x1b, 0x23, 0x37, 0x00, 0x07, 0x02, 0x10])
|
|
dataGMCTRP = bytearray([0x02, 0x1c, 0x07, 0x12, 0x37, 0x32, 0x29, 0x2d, 0x29,
|
|
0x25, 0x2b, 0x39, 0x00, 0x01, 0x03, 0x10])
|
|
self._writecommand(TFT.GMCTRP1)
|
|
self._writedata(dataGMCTRP)
|
|
|
|
# dataGMCTRN = bytearray([0x0f, 0x1b, 0x0f, 0x17, 0x33, 0x2c, 0x29, 0x2e, 0x30,
|
|
# 0x30, 0x39, 0x3f, 0x00, 0x07, 0x03, 0x10])
|
|
dataGMCTRN = bytearray([0x03, 0x1d, 0x07, 0x06, 0x2e, 0x2c, 0x29, 0x2d, 0x2e,
|
|
0x2e, 0x37, 0x3f, 0x00, 0x00, 0x02, 0x10])
|
|
self._writecommand(TFT.GMCTRN1)
|
|
self._writedata(dataGMCTRN)
|
|
time.sleep_us(10)
|
|
|
|
self._writecommand(TFT.CASET) #Column address set.
|
|
self.windowLocData[0] = 0x00
|
|
self.windowLocData[1] = 0x02 #Start at column 2
|
|
self.windowLocData[2] = 0x00
|
|
self.windowLocData[3] = self._size[0] - 1
|
|
self._writedata(self.windowLocData)
|
|
|
|
self._writecommand(TFT.RASET) #Row address set.
|
|
self.windowLocData[1] = 0x01 #Start at row 2.
|
|
self.windowLocData[3] = self._size[1] - 1
|
|
self._writedata(self.windowLocData)
|
|
|
|
data1 = bytearray(1)
|
|
self._writecommand(TFT.COLMOD) #Set color mode.
|
|
data1[0] = 0x05 #16 bit color.
|
|
self._writedata(data1)
|
|
time.sleep_us(10)
|
|
|
|
self._writecommand(TFT.NORON) #Normal display on.
|
|
time.sleep_us(10)
|
|
|
|
self._writecommand(TFT.RAMWR)
|
|
time.sleep_us(500)
|
|
|
|
self._writecommand(TFT.DISPON)
|
|
self.cs(1)
|
|
time.sleep_us(500)
|
|
|
|
#@micropython.native
|
|
def initg( self ) :
|
|
'''Initialize a green tab version.'''
|
|
self._reset()
|
|
|
|
self._writecommand(TFT.SWRESET) #Software reset.
|
|
time.sleep_us(150)
|
|
self._writecommand(TFT.SLPOUT) #out of sleep mode.
|
|
time.sleep_us(255)
|
|
|
|
data3 = bytearray([0x01, 0x2C, 0x2D]) #fastest refresh, 6 lines front, 3 lines back.
|
|
self._writecommand(TFT.FRMCTR1) #Frame rate control.
|
|
self._writedata(data3)
|
|
|
|
self._writecommand(TFT.FRMCTR2) #Frame rate control.
|
|
self._writedata(data3)
|
|
|
|
data6 = bytearray([0x01, 0x2c, 0x2d, 0x01, 0x2c, 0x2d])
|
|
self._writecommand(TFT.FRMCTR3) #Frame rate control.
|
|
self._writedata(data6)
|
|
time.sleep_us(10)
|
|
|
|
self._writecommand(TFT.INVCTR) #Display inversion control
|
|
self._writedata(bytearray([0x07]))
|
|
self._writecommand(TFT.PWCTR1) #Power control
|
|
data3[0] = 0xA2
|
|
data3[1] = 0x02
|
|
data3[2] = 0x84
|
|
self._writedata(data3)
|
|
|
|
self._writecommand(TFT.PWCTR2) #Power control
|
|
self._writedata(bytearray([0xC5]))
|
|
|
|
data2 = bytearray(2)
|
|
self._writecommand(TFT.PWCTR3) #Power control
|
|
data2[0] = 0x0A #Opamp current small
|
|
data2[1] = 0x00 #Boost frequency
|
|
self._writedata(data2)
|
|
|
|
self._writecommand(TFT.PWCTR4) #Power control
|
|
data2[0] = 0x8A #Opamp current small
|
|
data2[1] = 0x2A #Boost frequency
|
|
self._writedata(data2)
|
|
|
|
self._writecommand(TFT.PWCTR5) #Power control
|
|
data2[0] = 0x8A #Opamp current small
|
|
data2[1] = 0xEE #Boost frequency
|
|
self._writedata(data2)
|
|
|
|
self._writecommand(TFT.VMCTR1) #Power control
|
|
self._writedata(bytearray([0x0E]))
|
|
|
|
self._writecommand(TFT.INVOFF)
|
|
|
|
self._setMADCTL()
|
|
|
|
self._writecommand(TFT.COLMOD)
|
|
self._writedata(bytearray([0x05]))
|
|
|
|
self._writecommand(TFT.CASET) #Column address set.
|
|
self.windowLocData[0] = 0x00
|
|
self.windowLocData[1] = 0x01 #Start at row/column 1.
|
|
self.windowLocData[2] = 0x00
|
|
self.windowLocData[3] = self._size[0] - 1
|
|
self._writedata(self.windowLocData)
|
|
|
|
self._writecommand(TFT.RASET) #Row address set.
|
|
self.windowLocData[3] = self._size[1] - 1
|
|
self._writedata(self.windowLocData)
|
|
|
|
dataGMCTRP = bytearray([0x02, 0x1c, 0x07, 0x12, 0x37, 0x32, 0x29, 0x2d, 0x29,
|
|
0x25, 0x2b, 0x39, 0x00, 0x01, 0x03, 0x10])
|
|
self._writecommand(TFT.GMCTRP1)
|
|
self._writedata(dataGMCTRP)
|
|
|
|
dataGMCTRN = bytearray([0x03, 0x1d, 0x07, 0x06, 0x2e, 0x2c, 0x29, 0x2d, 0x2e,
|
|
0x2e, 0x37, 0x3f, 0x00, 0x00, 0x02, 0x10])
|
|
self._writecommand(TFT.GMCTRN1)
|
|
self._writedata(dataGMCTRN)
|
|
|
|
self._writecommand(TFT.NORON) #Normal display on.
|
|
time.sleep_us(10)
|
|
|
|
self._writecommand(TFT.DISPON)
|
|
time.sleep_us(100)
|
|
|
|
self.cs(1)
|
|
|
|
def maker( ) :
|
|
t = TFT(1, "X1", "X2")
|
|
print("Initializing")
|
|
t.initr()
|
|
t.fill(0)
|
|
return t
|
|
|
|
def makeb( ) :
|
|
t = TFT(1, "X1", "X2")
|
|
print("Initializing")
|
|
t.initb()
|
|
t.fill(0)
|
|
return t
|
|
|
|
def makeg( ) :
|
|
t = TFT(1, "X1", "X2")
|
|
print("Initializing")
|
|
t.initg()
|
|
t.fill(0)
|
|
return t
|
|
|