SimpleStockData/SimpleStockData.py

122 lines
5.1 KiB
Python
Executable File

import yfinance as yf
import pandas as pd
class SimpleStockData:
def __init__(self, ticker_list: list, period_start: str, period_end: str, to_currency: str = ""):
"""
:param period_start:
start date (format YYYY-MM-DD)
:param period_end:
end date (format YYYY-MM-DD)
:param ticker_list:
list containing all stocks/exchange rates (yfinance considers both as "Tickers")
:param to_currency:
currency to convert rates to
"""
self.ticker_list = ticker_list
self.to_currency = to_currency
self._period_start = period_start
self._period_end = period_end
self._exchange_df = None # Mapping: time mapped to conversion factor, to get the right converted value per date
self._create_exchange_dataframe() # initialize self.exchange_df attribute
def _get_history(self, idx, interval="1d"):
"""
Function for internal use; Just a wrapper around the .history method of the yfinance Ticker class
:param idx:
the index of the share
:param interval:
granularity of data - valid values are 1m, 2m, 5m, 15m, 30m, 60m, 90m, 1h, 1d, 5d, 1wk, 1mo, 3mo
:return: pandas.DataFrame
"""
return yf.Ticker(self.ticker_list[idx]).history(interval=interval, start=self._period_start,
end=self._period_end)
def _create_exchange_dataframe(self):
"""
The class has two separate attributes, one to store the plain convert list
(_from_currency_list), and one containing the real mapping needed to convert.
The mapping is recreated by this function following the information in the
_from_currency_list.
return:
boolean
"""
# check if a to_currency is even given
if self.to_currency == "":
return False
# create the list of currencies based on all the stocks of the class
_from_currency_list = []
for i in range(len(self.ticker_list)): # to get all indexes; this adds an entry for each currency
add_currency = f"{self.get_info(i, 'currency')}{self.to_currency}=X" # Format: "fffttt=X" f=from, t=to
# for the case that FROM and TO are equal, just don't download the data (as conversion factor's 1)
if add_currency == f"{self.to_currency}{self.to_currency}=X":
pass
elif add_currency not in _from_currency_list: # add a new item if not already there
_from_currency_list.append(add_currency)
print(_from_currency_list)
# now the real process begins
tickers = yf.Tickers(" ".join(_from_currency_list)) # create a new Ticker instance with all wanted currencies
exchange_rates = []
for i in tickers.tickers: # get all the history of each currency conversion factors
# for simplicity: using the conversion factor of closing (.Close at the end)
exchange_rates.append(tickers.tickers[i].history(start=self._period_start, end=self._period_end).Close)
self._exchange_df = pd.DataFrame(
exchange_rates).T # transpose the dataframe (imagine just switching rows and columns)
self._exchange_df.columns = _from_currency_list # set the right names for the columns in the dataframe
self._exchange_df[
f"{self.to_currency}{self.to_currency}=X"] = 1.0 # for FROM and TO being equal: set factor to 1
return True
def get_info(self, idx, key=""):
"""
:param idx:
the index of the share
:param key:
OPTIONAL. gives which specific datum is wanted
:return:
"""
info = yf.Ticker(self.ticker_list[idx]).info
if key != "": # if just one specific information is wanted
return info[key.lower()]
return info
def get_history(self, idx, interval="1d", convert=True):
"""
Just a wrapper around the .history method of the yfinance Ticker class.
Adds a new column containing the internal index of the ticker.
:param idx:
the index of the share
:param interval:
granularity of data - valid values are 1m, 2m, 5m, 15m, 30m, 60m, 90m, 1h, 1d, 5d, 1wk, 1mo, 3mo
:param convert:
decides if the resulting values should be converted to the specified to_convert currency (given at
object creation)
:return: pandas.DataFrame
"""
# TODO: Not working. Something is wrong with the access to the _exchange_df via [].
result = self._get_history(idx, interval)
result["Ticker Index"] = idx
ticker_currency = self.get_info(idx, "currency")
if convert:
value_list = ["Open", "High", "Low", "Close"]
for value in value_list:
result["rating_name"] = f"{ticker_currency}{self.to_currency}=X"
result["rating"] = self._exchange_df[f"{ticker_currency}{self.to_currency}=X"]
result[f"{value}.conv"] = result[value] / result["rating"]
return result