Added needed libraries

This commit is contained in:
BlueFox 2024-03-16 14:20:42 +01:00
parent 1dcb89128e
commit 8638dce526
3 changed files with 860 additions and 0 deletions

288
lib/PCF8574.py Normal file
View File

@ -0,0 +1,288 @@
# https://github.com/T-622/RPI-PICO-I2C-LCD
# Original driver by Tyler Peppy, modified by Benjamin Burkhardt (2024)
"""
MIT License
Copyright (c) 2023 Tyler Peppy
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
"""
import time
from machine import I2C
import utime
import gc
# PCF8574 pin definitions
MASK_RS = 0x01 # P0
MASK_RW = 0x02 # P1
MASK_E = 0x04 # P2
SHIFT_BACKLIGHT = 3 # P3
SHIFT_DATA = 4 # P4-P7
class LCD_API:
# Implements the API for talking with HD44780 compatible character LCDs.
# This class only knows what commands to send to the LCD, and not how to get
# them to the LCD.
#
# It is expected that a derived class will implement the hal_xxx functions.
#
# The following constant names were lifted from the avrlib lcd.h header file,
# with bit numbers changed to bit masks.
# HD44780 LCD controller command set
LCD_CLR = 0x01 # DB0: clear display
LCD_HOME = 0x02 # DB1: return to home position
LCD_ENTRY_MODE = 0x04 # DB2: set entry mode
LCD_ENTRY_INC = 0x02 # DB1: increment
LCD_ENTRY_SHIFT = 0x01 # DB0: shift
LCD_ON_CTRL = 0x08 # DB3: turn lcd/cursor on
LCD_ON_DISPLAY = 0x04 # DB2: turn display on
LCD_ON_CURSOR = 0x02 # DB1: turn cursor on
LCD_ON_BLINK = 0x01 # DB0: blinking cursor
LCD_MOVE = 0x10 # DB4: move cursor/display
LCD_MOVE_DISP = 0x08 # DB3: move display (0-> move cursor)
LCD_MOVE_RIGHT = 0x04 # DB2: move right (0-> left)
LCD_FUNCTION = 0x20 # DB5: function set
LCD_FUNCTION_8BIT = 0x10 # DB4: set 8BIT mode (0->4BIT mode)
LCD_FUNCTION_2LINES = 0x08 # DB3: two lines (0->one line)
LCD_FUNCTION_10DOTS = 0x04 # DB2: 5x10 font (0->5x7 font)
LCD_FUNCTION_RESET = 0x30 # See "Initializing by Instruction" section
LCD_CGRAM = 0x40 # DB6: set CG RAM address
LCD_DDRAM = 0x80 # DB7: set DD RAM address
LCD_RS_CMD = 0
LCD_RS_DATA = 1
LCD_RW_WRITE = 0
LCD_RW_READ = 1
def __init__(self, num_lines, num_columns):
self.num_lines = num_lines
if self.num_lines > 4:
self.num_lines = 4
self.num_columns = num_columns
if self.num_columns > 40:
self.num_columns = 40
self.cursor_x = 0
self.cursor_y = 0
self.implied_newline = False
self.backlight = True
self.display_off()
self.backlight_on()
self.clear()
self.hal_write_command(self.LCD_ENTRY_MODE | self.LCD_ENTRY_INC)
self.hide_cursor()
self.display_on()
def clear(self):
# Clears the LCD display and moves the cursor to the top left corner
self.hal_write_command(self.LCD_CLR)
self.hal_write_command(self.LCD_HOME)
self.cursor_x = 0
self.cursor_y = 0
def show_cursor(self):
# Causes the cursor to be made visible
self.hal_write_command(self.LCD_ON_CTRL | self.LCD_ON_DISPLAY |
self.LCD_ON_CURSOR)
def hide_cursor(self):
# Causes the cursor to be hidden
self.hal_write_command(self.LCD_ON_CTRL | self.LCD_ON_DISPLAY)
def blink_cursor_on(self):
# Turns on the cursor, and makes it blink
self.hal_write_command(self.LCD_ON_CTRL | self.LCD_ON_DISPLAY |
self.LCD_ON_CURSOR | self.LCD_ON_BLINK)
def blink_cursor_off(self):
# Turns on the cursor, and makes it no blink (i.e. be solid)
self.hal_write_command(self.LCD_ON_CTRL | self.LCD_ON_DISPLAY |
self.LCD_ON_CURSOR)
def display_on(self):
# Turns on (i.e. unblanks) the LCD
self.hal_write_command(self.LCD_ON_CTRL | self.LCD_ON_DISPLAY)
def display_off(self):
# Turns off (i.e. blanks) the LCD
self.hal_write_command(self.LCD_ON_CTRL)
def backlight_on(self):
# Turns the backlight on.
# This isn't really an LCD command, but some modules have backlight
# controls, so this allows the hal to pass through the command.
self.backlight = True
self.hal_backlight_on()
def backlight_off(self):
# Turns the backlight off.
# This isn't really an LCD command, but some modules have backlight
# controls, so this allows the hal to pass through the command.
self.backlight = False
self.hal_backlight_off()
def move_to(self, cursor_x, cursor_y):
# Moves the cursor position to the indicated position. The cursor
# position is zero based (i.e. cursor_x == 0 indicates first column).
self.cursor_x = cursor_x
self.cursor_y = cursor_y
addr = cursor_x & 0x3f
if cursor_y & 1:
addr += 0x40 # Lines 1 & 3 add 0x40
if cursor_y & 2: # Lines 2 & 3 add number of columns
addr += self.num_columns
self.hal_write_command(self.LCD_DDRAM | addr)
def putchar(self, char):
# Writes the indicated character to the LCD at the current cursor
# position, and advances the cursor by one position.
if char == '\n':
if self.implied_newline:
# self.implied_newline means we advanced due to a wraparound,
# so if we get a newline right after that we ignore it.
pass
else:
self.cursor_x = self.num_columns
else:
self.hal_write_data(ord(char))
self.cursor_x += 1
if self.cursor_x >= self.num_columns:
self.cursor_x = 0
self.cursor_y += 1
self.implied_newline = (char != '\n')
if self.cursor_y >= self.num_lines:
self.cursor_y = 0
self.move_to(self.cursor_x, self.cursor_y)
def putstr(self, string):
# Write the indicated string to the LCD at the current cursor
# position and advances the cursor position appropriately.
for char in string:
self.putchar(char)
def custom_char(self, location, charmap):
# Write a character to one of the 8 CGRAM locations, available
# as chr(0) through chr(7).
location &= 0x7
self.hal_write_command(self.LCD_CGRAM | (location << 3))
self.hal_sleep_us(40)
for i in range(8):
self.hal_write_data(charmap[i])
self.hal_sleep_us(40)
self.move_to(self.cursor_x, self.cursor_y)
def hal_backlight_on(self):
# Allows the hal layer to turn the backlight on.
# If desired, a derived HAL class will implement this function.
pass
def hal_backlight_off(self):
# Allows the hal layer to turn the backlight off.
# If desired, a derived HAL class will implement this function.
pass
def hal_write_command(self, cmd):
# Write a command to the LCD.
# It is expected that a derived HAL class will implement this function.
raise NotImplementedError
def hal_write_data(self, data):
# Write data to the LCD.
# It is expected that a derived HAL class will implement this function.
raise NotImplementedError
def hal_sleep_us(self, usecs):
# Sleep for some time (given in microseconds)
time.sleep_us(usecs)
class I2C_LCD(LCD_API):
#Implements a HD44780 character LCD connected via PCF8574 on I2C
def __init__(self, i2c, i2c_addr, num_lines, num_columns):
self.i2c = i2c
self.i2c_addr = i2c_addr
self.i2c.writeto(self.i2c_addr, bytes([0]))
utime.sleep_ms(20) # Allow LCD time to powerup
# Send reset 3 times
self.hal_write_init_nibble(self.LCD_FUNCTION_RESET)
utime.sleep_ms(5) # Need to delay at least 4.1 msec
self.hal_write_init_nibble(self.LCD_FUNCTION_RESET)
utime.sleep_ms(1)
self.hal_write_init_nibble(self.LCD_FUNCTION_RESET)
utime.sleep_ms(1)
# Put LCD into 4-bit mode
self.hal_write_init_nibble(self.LCD_FUNCTION)
utime.sleep_ms(1)
LCD_API.__init__(self, num_lines, num_columns)
cmd = self.LCD_FUNCTION
if num_lines > 1:
cmd |= self.LCD_FUNCTION_2LINES
self.hal_write_command(cmd)
gc.collect()
def hal_write_init_nibble(self, nibble):
# Writes an initialization nibble to the LCD.
# This particular function is only used during initialization.
byte = ((nibble >> 4) & 0x0f) << SHIFT_DATA
self.i2c.writeto(self.i2c_addr, bytes([byte | MASK_E]))
self.i2c.writeto(self.i2c_addr, bytes([byte]))
gc.collect()
def hal_backlight_on(self):
# Allows the hal layer to turn the backlight on
self.i2c.writeto(self.i2c_addr, bytes([1 << SHIFT_BACKLIGHT]))
gc.collect()
def hal_backlight_off(self):
#Allows the hal layer to turn the backlight off
self.i2c.writeto(self.i2c_addr, bytes([0]))
gc.collect()
def hal_write_command(self, cmd):
# Write a command to the LCD. Data is latched on the falling edge of E.
byte = ((self.backlight << SHIFT_BACKLIGHT) |
(((cmd >> 4) & 0x0f) << SHIFT_DATA))
self.i2c.writeto(self.i2c_addr, bytes([byte | MASK_E]))
self.i2c.writeto(self.i2c_addr, bytes([byte]))
byte = ((self.backlight << SHIFT_BACKLIGHT) |
((cmd & 0x0f) << SHIFT_DATA))
self.i2c.writeto(self.i2c_addr, bytes([byte | MASK_E]))
self.i2c.writeto(self.i2c_addr, bytes([byte]))
if cmd <= 3:
# The home and clear commands require a worst case delay of 4.1 msec
utime.sleep_ms(5)
gc.collect()
def hal_write_data(self, data):
# Write data to the LCD. Data is latched on the falling edge of E.
byte = (MASK_RS |
(self.backlight << SHIFT_BACKLIGHT) |
(((data >> 4) & 0x0f) << SHIFT_DATA))
self.i2c.writeto(self.i2c_addr, bytes([byte | MASK_E]))
self.i2c.writeto(self.i2c_addr, bytes([byte]))
byte = (MASK_RS |
(self.backlight << SHIFT_BACKLIGHT) |
((data & 0x0f) << SHIFT_DATA))
self.i2c.writeto(self.i2c_addr, bytes([byte | MASK_E]))
self.i2c.writeto(self.i2c_addr, bytes([byte]))
gc.collect()

79
lib/ProgramChooser.py Normal file
View File

@ -0,0 +1,79 @@
from machine import Pin, I2C
from PCF8574 import I2C_LCD
import time
class ProgramChooser:
def __init__(self, programs: list, next_btn: int, ok_btn: int, debug=False, run_directly=False):
self.next_btn = Pin(next_btn, Pin.IN, Pin.PULL_DOWN)
self.ok_btn = Pin(ok_btn, Pin.IN, Pin.PULL_DOWN)
self._i2c = I2C(0, sda=Pin(0), scl=Pin(1), freq=400000)
self.lcd = I2C_LCD(self._i2c, 0x27, 2, 16)
self.lcd.custom_char(0, bytearray([0x00,0x00,0x00,0x00,0x00,0x00,0x15,0x00])) # three dots in one, chr(0)
self.lcd.move_to(0,0)
self.lcd.putstr("[ProgramChooser]< >")
self.current_selection = None # no selection
self.programs = programs # a dictionary of programs and it's callbacks e.g. {"lora_test": some_callback}
self.show_selection()
if run_directly: self.run()
def log(self, msg, is_debug=False):
print(f"[ProgramChooser] {msg}")
def show_selection(self):
self.lcd.move_to(1,1)
if len(self.programs) == 0:
self.lcd.putstr(" No programs!")
return True
if self.current_selection == None: # set it initially
self.current_selection = 0
# the actual displaying process
to_show = list(self.programs.keys())[self.current_selection]
if len(to_show) > 14:
to_show = to_show[:13] + chr(0)
else:
to_show = to_show[:14]
to_show = to_show.center(14)
self.lcd.putstr(to_show)
return True
def run(self):
while True:
if self.next_btn.value() == 1:
former_program_name = list(self.programs.keys())[self.current_selection]
self.current_selection = (self.current_selection+1)%len(list(self.programs.keys()))
self.show_selection()
now_program_name = list(self.programs.keys())[self.current_selection]
self.log(f"Selected next program (\"{former_program_name}\" -> \"{now_program_name}\")")
while self.next_btn.value() == 1: time.sleep(0.01) # wait till release
if self.ok_btn.value() == 1:
program_name = list(self.programs.keys())[self.current_selection]
self.log(f"Running selected program! (\"{program_name}\")")
# shorten the name for displaying (if too long)
if len(program_name) > 14:
program_name = program_name[:13] + chr(0)
else:
program_name = program_name[:14]
program_name = program_name.center(14)
self.lcd.move_to(0,0)
self.lcd.putstr(f" {program_name} Executing... ")
self.execute_selection()
while self.ok_btn.value() == 1: time.sleep(0.01) # wait till release (e.g. if the "program" is a simple send action)
self.lcd.putstr(f" {program_name} Closing... ")
time.sleep(1)
self.lcd.move_to(0,0)
self.lcd.putstr("[ProgramChooser]< >")
self.show_selection()
time.sleep(0.01)
def execute_selection(self): # execute the current selected program's callback
self.programs[list(self.programs.keys())[self.current_selection]]()

493
lib/SX127x.py Normal file
View File

@ -0,0 +1,493 @@
from time import sleep
from machine import SPI, Pin
import gc
PA_OUTPUT_RFO_PIN = 0
PA_OUTPUT_PA_BOOST_PIN = 1
# registers
REG_FIFO = 0x00
REG_OP_MODE = 0x01
REG_FRF_MSB = 0x06
REG_FRF_MID = 0x07
REG_FRF_LSB = 0x08
REG_PA_CONFIG = 0x09
REG_LNA = 0x0c
REG_FIFO_ADDR_PTR = 0x0d
REG_FIFO_TX_BASE_ADDR = 0x0e
FifoTxBaseAddr = 0x00
# FifoTxBaseAddr = 0x80
REG_FIFO_RX_BASE_ADDR = 0x0f
FifoRxBaseAddr = 0x00
REG_FIFO_RX_CURRENT_ADDR = 0x10
REG_IRQ_FLAGS_MASK = 0x11
REG_IRQ_FLAGS = 0x12
REG_RX_NB_BYTES = 0x13
REG_PKT_RSSI_VALUE = 0x1a
REG_PKT_SNR_VALUE = 0x1b
REG_MODEM_CONFIG_1 = 0x1d
REG_MODEM_CONFIG_2 = 0x1e
REG_PREAMBLE_MSB = 0x20
REG_PREAMBLE_LSB = 0x21
REG_PAYLOAD_LENGTH = 0x22
REG_FIFO_RX_BYTE_ADDR = 0x25
REG_MODEM_CONFIG_3 = 0x26
REG_RSSI_WIDEBAND = 0x2c
REG_DETECTION_OPTIMIZE = 0x31
REG_DETECTION_THRESHOLD = 0x37
REG_SYNC_WORD = 0x39
REG_DIO_MAPPING_1 = 0x40
REG_VERSION = 0x42
# invert IQ
REG_INVERTIQ = 0x33
RFLR_INVERTIQ_RX_MASK = 0xBF
RFLR_INVERTIQ_RX_OFF = 0x00
RFLR_INVERTIQ_RX_ON = 0x40
RFLR_INVERTIQ_TX_MASK = 0xFE
RFLR_INVERTIQ_TX_OFF = 0x01
RFLR_INVERTIQ_TX_ON = 0x00
REG_INVERTIQ2 = 0x3B
RFLR_INVERTIQ2_ON = 0x19
RFLR_INVERTIQ2_OFF = 0x1D
# modes
MODE_LONG_RANGE_MODE = 0x80 # bit 7: 1 => LoRa mode
MODE_SLEEP = 0x00
MODE_STDBY = 0x01
MODE_TX = 0x03
MODE_RX_CONTINUOUS = 0x05
MODE_RX_SINGLE = 0x06
# PA config
PA_BOOST = 0x80
# IRQ masks
IRQ_TX_DONE_MASK = 0x08
IRQ_PAYLOAD_CRC_ERROR_MASK = 0x20
IRQ_RX_DONE_MASK = 0x40
IRQ_RX_TIME_OUT_MASK = 0x80
# Buffer size
MAX_PKT_LENGTH = 255
__DEBUG__ = False
class SX127x:
default_parameters = {
'frequency': 433E6,
'tx_power_level': 2,
'signal_bandwidth': 125E3,
'spreading_factor': 8,
'coding_rate': 5,
'preamble_length': 8,
'implicit_header': False,
'sync_word': 0x12,
'enable_CRC': False,
'invert_IQ': False,
}
def __init__(self,
spi,
pins,
parameters=default_parameters):
self._spi = spi
self._pins = pins
self._parameters = parameters
self._lock = False
# setting pins
if "dio_0" in self._pins:
self._pin_rx_done = Pin(self._pins["dio_0"], Pin.IN)
if "ss" in self._pins:
self._pin_ss = Pin(self._pins["ss"], Pin.OUT)
if "led" in self._pins:
self._led_status = Pin(self._pins["led"], Pin.OUT)
# check hardware version
init_try = True
re_try = 0
while init_try and re_try < 5:
version = self.read_register(REG_VERSION)
re_try = re_try + 1
if version != 0:
init_try = False
if version != 0x12:
raise Exception('Invalid version.')
if __DEBUG__:
print("SX version: {}".format(version))
# put in LoRa and sleep mode
self.sleep()
# config
self.set_frequency(self._parameters['frequency'])
self.set_signal_bandwidth(self._parameters['signal_bandwidth'])
# set LNA boost
self.write_register(REG_LNA, self.read_register(REG_LNA) | 0x03)
# set auto AGC
self.write_register(REG_MODEM_CONFIG_3, 0x04)
self.set_tx_power(self._parameters['tx_power_level'])
self._implicit_header_mode = None
self.implicit_header_mode(self._parameters['implicit_header'])
self.set_spreading_factor(self._parameters['spreading_factor'])
self.set_coding_rate(self._parameters['coding_rate'])
self.set_preamble_length(self._parameters['preamble_length'])
self.set_sync_word(self._parameters['sync_word'])
self.enable_CRC(self._parameters['enable_CRC'])
self.invert_IQ(self._parameters["invert_IQ"])
# set LowDataRateOptimize flag if symbol time > 16ms (default disable on reset)
# self.write_register(REG_MODEM_CONFIG_3, self.read_register(REG_MODEM_CONFIG_3) & 0xF7) # default disable on reset
bw_parameter = self._parameters["signal_bandwidth"]
sf_parameter = self._parameters["spreading_factor"]
if 1000 / (bw_parameter / 2**sf_parameter) > 16:
self.write_register(
REG_MODEM_CONFIG_3,
self.read_register(REG_MODEM_CONFIG_3) | 0x08
)
# set base addresses
self.write_register(REG_FIFO_TX_BASE_ADDR, FifoTxBaseAddr)
self.write_register(REG_FIFO_RX_BASE_ADDR, FifoRxBaseAddr)
self.standby()
def begin_packet(self, implicit_header_mode = False):
self.standby()
self.implicit_header_mode(implicit_header_mode)
# reset FIFO address and paload length
self.write_register(REG_FIFO_ADDR_PTR, FifoTxBaseAddr)
self.write_register(REG_PAYLOAD_LENGTH, 0)
def end_packet(self):
# put in TX mode
self.write_register(REG_OP_MODE, MODE_LONG_RANGE_MODE | MODE_TX)
# wait for TX done, standby automatically on TX_DONE
while self.read_register(REG_IRQ_FLAGS) & IRQ_TX_DONE_MASK == 0:
pass
# clear IRQ's
self.write_register(REG_IRQ_FLAGS, IRQ_TX_DONE_MASK)
self.collect_garbage()
def write(self, buffer):
currentLength = self.read_register(REG_PAYLOAD_LENGTH)
size = len(buffer)
# check size
size = min(size, (MAX_PKT_LENGTH - FifoTxBaseAddr - currentLength))
# write data
for i in range(size):
self.write_register(REG_FIFO, buffer[i])
# update length
self.write_register(REG_PAYLOAD_LENGTH, currentLength + size)
return size
def set_lock(self, lock = False):
self._lock = lock
def println(self, msg, implicit_header = False):
self.set_lock(True) # wait until RX_Done, lock and begin writing.
self.begin_packet(implicit_header)
if isinstance(msg, str):
message = msg.encode()
self.write(message)
self.end_packet()
self.set_lock(False) # unlock when done writing
self.collect_garbage()
def get_irq_flags(self):
irq_flags = self.read_register(REG_IRQ_FLAGS)
self.write_register(REG_IRQ_FLAGS, irq_flags)
return irq_flags
def packet_rssi(self):
rssi = self.read_register(REG_PKT_RSSI_VALUE)
return (rssi - (164 if self._frequency < 868E6 else 157))
def packet_snr(self):
snr = self.read_register(REG_PKT_SNR_VALUE)
return snr * 0.25
def standby(self):
self.write_register(REG_OP_MODE, MODE_LONG_RANGE_MODE | MODE_STDBY)
def sleep(self):
self.write_register(REG_OP_MODE, MODE_LONG_RANGE_MODE | MODE_SLEEP)
def set_tx_power(self, level, outputPin = PA_OUTPUT_PA_BOOST_PIN):
self._tx_power_level = level
if (outputPin == PA_OUTPUT_RFO_PIN):
# RFO
level = min(max(level, 0), 14)
self.write_register(REG_PA_CONFIG, 0x70 | level)
else:
# PA BOOST
level = min(max(level, 2), 17)
self.write_register(REG_PA_CONFIG, PA_BOOST | (level - 2))
def set_frequency(self, frequency):
self._frequency = frequency
freq_reg = int(int(int(frequency) << 19) / 32000000) & 0xFFFFFF
self.write_register(REG_FRF_MSB, (freq_reg & 0xFF0000) >> 16)
self.write_register(REG_FRF_MID, (freq_reg & 0xFF00) >> 8)
self.write_register(REG_FRF_LSB, (freq_reg & 0xFF))
def set_spreading_factor(self, sf):
sf = min(max(sf, 6), 12)
self.write_register(REG_DETECTION_OPTIMIZE, 0xc5 if sf == 6 else 0xc3)
self.write_register(REG_DETECTION_THRESHOLD, 0x0c if sf == 6 else 0x0a)
self.write_register(
REG_MODEM_CONFIG_2,
(self.read_register(REG_MODEM_CONFIG_2) & 0x0f) | ((sf << 4) & 0xf0)
)
def set_signal_bandwidth(self, sbw):
bins = (7.8E3, 10.4E3, 15.6E3, 20.8E3, 31.25E3, 41.7E3, 62.5E3, 125E3, 250E3)
bw = 9
if sbw < 10:
bw = sbw
else:
for i in range(len(bins)):
if sbw <= bins[i]:
bw = i
break
self.write_register(
REG_MODEM_CONFIG_1,
(self.read_register(REG_MODEM_CONFIG_1) & 0x0f) | (bw << 4)
)
def set_coding_rate(self, denominator):
denominator = min(max(denominator, 5), 8)
cr = denominator - 4
self.write_register(
REG_MODEM_CONFIG_1,
(self.read_register(REG_MODEM_CONFIG_1) & 0xf1) | (cr << 1)
)
def set_preamble_length(self, length):
self.write_register(REG_PREAMBLE_MSB, (length >> 8) & 0xff)
self.write_register(REG_PREAMBLE_LSB, (length >> 0) & 0xff)
def enable_CRC(self, enable_CRC = False):
modem_config_2 = self.read_register(REG_MODEM_CONFIG_2)
config = modem_config_2 | 0x04 if enable_CRC else modem_config_2 & 0xfb
self.write_register(REG_MODEM_CONFIG_2, config)
def invert_IQ(self, invert_IQ):
self._parameters["invertIQ"] = invert_IQ
if invert_IQ:
self.write_register(
REG_INVERTIQ,
(
(
self.read_register(REG_INVERTIQ)
& RFLR_INVERTIQ_TX_MASK
& RFLR_INVERTIQ_RX_MASK
)
| RFLR_INVERTIQ_RX_ON
| RFLR_INVERTIQ_TX_ON
),
)
self.write_register(REG_INVERTIQ2, RFLR_INVERTIQ2_ON)
else:
self.write_register(
REG_INVERTIQ,
(
(
self.read_register(REG_INVERTIQ)
& RFLR_INVERTIQ_TX_MASK
& RFLR_INVERTIQ_RX_MASK
)
| RFLR_INVERTIQ_RX_OFF
| RFLR_INVERTIQ_TX_OFF
),
)
self.write_register(REG_INVERTIQ2, RFLR_INVERTIQ2_OFF)
def set_sync_word(self, sw):
self.write_register(REG_SYNC_WORD, sw)
def set_channel(self, parameters):
self.standby()
for key in parameters:
if key == "frequency":
self.set_frequency(parameters[key])
continue
if key == "invert_IQ":
self.invert_IQ(parameters[key])
continue
if key == "tx_power_level":
self.set_tx_power(parameters[key])
continue
def dump_registers(self):
for i in range(128):
print("0x{:02X}: {:02X}".format(i, self.read_register(i)), end="")
if (i + 1) % 4 == 0:
print()
else:
print(" | ", end="")
def implicit_header_mode(self, implicit_header_mode = False):
if self._implicit_header_mode != implicit_header_mode: # set value only if different.
self._implicit_header_mode = implicit_header_mode
modem_config_1 = self.read_register(REG_MODEM_CONFIG_1)
config = (modem_config_1 | 0x01
if implicit_header_mode else modem_config_1 & 0xfe)
self.write_register(REG_MODEM_CONFIG_1, config)
def receive(self, size = 0):
self.implicit_header_mode(size > 0)
if size > 0:
self.write_register(REG_PAYLOAD_LENGTH, size & 0xff)
# The last packet always starts at FIFO_RX_CURRENT_ADDR
# no need to reset FIFO_ADDR_PTR
self.write_register(
REG_OP_MODE, MODE_LONG_RANGE_MODE | MODE_RX_CONTINUOUS
)
def on_receive(self, callback):
self._on_receive = callback
if self._pin_rx_done:
if callback:
self.write_register(REG_DIO_MAPPING_1, 0x00)
self._pin_rx_done.irq(
trigger=Pin.IRQ_RISING, handler = self.handle_on_receive
)
else:
self._pin_rx_done.detach_irq()
def handle_on_receive(self, event_source):
self.set_lock(True) # lock until TX_Done
irq_flags = self.get_irq_flags()
if (irq_flags == IRQ_RX_DONE_MASK): # RX_DONE only, irq_flags should be 0x40
# automatically standby when RX_DONE
if self._on_receive:
payload = self.read_payload()
self._on_receive(self, payload)
elif self.read_register(REG_OP_MODE) != (
MODE_LONG_RANGE_MODE | MODE_RX_SINGLE
):
# no packet received.
# reset FIFO address / # enter single RX mode
self.write_register(REG_FIFO_ADDR_PTR, FifoRxBaseAddr)
self.write_register(
REG_OP_MODE,
MODE_LONG_RANGE_MODE | MODE_RX_SINGLE
)
self.set_lock(False) # unlock in any case.
self.collect_garbage()
return True
def received_packet(self, size = 0):
irq_flags = self.get_irq_flags()
self.implicit_header_mode(size > 0)
if size > 0:
self.write_register(REG_PAYLOAD_LENGTH, size & 0xff)
# if (irq_flags & IRQ_RX_DONE_MASK) and \
# (irq_flags & IRQ_RX_TIME_OUT_MASK == 0) and \
# (irq_flags & IRQ_PAYLOAD_CRC_ERROR_MASK == 0):
if (irq_flags == IRQ_RX_DONE_MASK):
# RX_DONE only, irq_flags should be 0x40
# automatically standby when RX_DONE
return True
elif self.read_register(REG_OP_MODE) != (MODE_LONG_RANGE_MODE | MODE_RX_SINGLE):
# no packet received.
# reset FIFO address / # enter single RX mode
self.write_register(REG_FIFO_ADDR_PTR, FifoRxBaseAddr)
self.write_register(
REG_OP_MODE,
MODE_LONG_RANGE_MODE | MODE_RX_SINGLE
)
def read_payload(self):
# set FIFO address to current RX address
# fifo_rx_current_addr = self.read_register(REG_FIFO_RX_CURRENT_ADDR)
self.write_register(
REG_FIFO_ADDR_PTR,
self.read_register(REG_FIFO_RX_CURRENT_ADDR)
)
# read packet length
if self._implicit_header_mode:
packet_length = self.read_register(REG_PAYLOAD_LENGTH)
else:
packet_length = self.read_register(REG_RX_NB_BYTES)
payload = bytearray()
for i in range(packet_length):
payload.append(self.read_register(REG_FIFO))
self.collect_garbage()
return bytes(payload)
def read_register(self, address, byteorder = 'big', signed = False):
response = self.transfer(address & 0x7f)
return int.from_bytes(response, byteorder)
def write_register(self, address, value):
self.transfer(address | 0x80, value)
def transfer(self, address, value = 0x00):
response = bytearray(1)
self._pin_ss.value(0)
self._spi.write(bytes([address]))
self._spi.write_readinto(bytes([value]), response)
self._pin_ss.value(1)
return response
def blink_led(self, times = 1, on_seconds = 0.1, off_seconds = 0.1):
for i in range(times):
if self._led_status:
self._led_status.value(True)
sleep(on_seconds)
self._led_status.value(False)
sleep(off_seconds)
def collect_garbage(self):
gc.collect()
if __DEBUG__:
print('[Memory - free: {} allocated: {}]'.format(gc.mem_free(), gc.mem_alloc()))